First-hand experience is an essential part of gaining real understanding Ph.D. Neuroscience students take lecture and laboratory courses; learn to read, understand, and present current scientific literature; develop and carry out substantial original research, and present their research at meetings and conferences, including the annual Neuroscience retreat each Spring. During the first year, all students participate in a unique year-long Core Course that surveys current neuroscience. The subjects covered in lectures are accompanied by direct experience in the lab. Students learn through first-hand experience how to run their own fMRI experiments; to design and run their own computer simulations of neural networks; to image neural activity at cellular resolution in behaving animals; and to patch-clamp single cells, to name a few examples. This core course offers students a unique opportunity to learn the practical knowledge essential for successfully developing new experiments and techniques. Incoming students are encouraged to rotate through up to three different labs to choose the lab that best matches their interests. During this process, students may discover an area of research completely new and fascinating to them. Following their rotations and by mutual agreement with their prospective faculty adviser, students choose a lab in which they will carry out their Ph.D. research. Ph.D. Timeline Overview First Year The first year of the graduate program begins with the Neuro Boot Camp in August. All newly admitted Neuroscience graduate students are required to attend a 2-week course intended to ensure that new recruits have a basic understanding of molecular biology, as well as the core skills required to use mathematical and computational approaches to analyze neural systems and neural data. The Neuro Boot Camp takes the form of morning lectures and afternoon workshops in which students will apply the principles introduced in the lectures. Once the academic year begins, all students take the Neuroscience Core Course. The goal of this course is to provide a common foundation so that all students have a strong knowledge base and a common language across the breadth of Neuroscience, which is a highly diverse and multidisciplinary field. To the extent possible, the course aims to teach an overview of all topics through a mix of hands-on laboratory experience, lecture, and computational modeling. Students will also rotate in up to three labs, participate in grant-writing workshops, and attend the Society for Neuroscience Annual Conference. Second year By the second year of their Ph.D., students will have joined a research group. Projects that involve collaborations across groups, and thus have students joining more than one research group, are decidedly welcomed. Students also typically teach half-time during their second year, as part of learning to teach and communicate science, and as a part of helping the Neuroscience Institute's educational mission. The other half of their time, students begin to carry out in-depth research and dedicate themselves wholly to this in the summer between their second and third years. Students also will participate in an NSF Fellowship grant-writing workshop in September. Third year and on At the beginning of their third year, Ph.D. students present their thesis proposal at a generals exam, in which they demonstrate the command of their chosen research topic and the existing literature surrounding it, and present a logical plan to address key questions that they have identified. The third, fourth and fifth years are largely devoted to research. They culminate with the submission of their research papers for publication, and the writing and defense of their Ph.D. thesis. Throughout their time at Princeton, students participate in grant-writing workshops, career workshops, and present their work both locally and in national and international conferences. QCN Track Across the board, from molecular biology to physics to psychology, Princeton's world-class faculty is particularly strong in quantitative and theoretical investigations. The same is true in Neuroscience. In recognition of this, a Quantitative and Computational Neuroscience track exists within the Neuroscience Ph.D. Students in this track must fulfill all the requirements of the Neuroscience Ph.D. In addition, their electives should be in quantitative courses, and their Ph.D. research should be in quantitative and/or computational neuroscience. The QCN track is supported by the T32 training grant in Quantitative Neuroscience from the NIMH.